અવરોધ ધરાવતા માધ્યમમાં સ્થિર સ્થિતિમાંથી નીચે પડતાં પદાર્થના વેગમાં થતો ફેરફાર $\frac{{dV}}{{dt}} = At - BV$ મુજબ આપવામાં આવે છે . તો $A$ અને $B$ નું પારિમાણિક સૂત્ર શું થાય?
$LT^{-3}, T$
$LT^{-3}, T^{-1}$
$LT, T$
$LT, T^{-1}$
$M$ દ્રવ્યમાન અને $R$ ત્રિજ્યા ધરાવતા ગ્રહની આસપાસ એક કૃત્રિમ ઉપગ્રહ $r$ ત્રિજ્યાની વર્તુળાકાર કક્ષામાં ભ્રમણ કરે છે. કેપ્લરના બીજા નિયમ અનુસાર ઉપગ્રહના આવર્તકાળનો વર્ગ, કક્ષાની ત્રિજ્યા $r$ ના ઘનના સમપ્રમાણમાં છે. $\left( {{T^2}\alpha \,{r^3}} \right)$) તો પારિમાણિક વિશ્લેષણના આધારે સાબિત કરો કે $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $ જ્યાં $k$ પરિમાણરહિત અચળાંક અને $g$ ગુરુત્વપ્રવેગ છે.
$\frac{{dy}}{{dt}}\,\, = \,2\,\omega \sin \,(\omega t\, + \,\,{\theta _0})\,$ સમીકરણમાં ${\text{( }}\omega {\text{t + }}{\theta _{\text{0}}}{\text{ )}}$ ના પરિમાણ.......છે
એક પદાર્થ પ્રવાહીમાં ગતિ કરે છે. તેના પર લાગતું શ્યાનતા બળ વેગના સમપ્રમાણમાં છે તો આ સમપ્રમાણતાના અચળાંકનું પારિમાણિક સૂત્ર શું થાય?